3.259 \(\int \frac{1}{\sqrt{d \csc (a+b x)} \sqrt{c \sec (a+b x)}} \, dx\)

Optimal. Leaf size=53 \[ \frac{E\left (\left .a+b x-\frac{\pi }{4}\right |2\right )}{b \sqrt{\sin (2 a+2 b x)} \sqrt{c \sec (a+b x)} \sqrt{d \csc (a+b x)}} \]

[Out]

EllipticE[a - Pi/4 + b*x, 2]/(b*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0884838, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2630, 2572, 2639} \[ \frac{E\left (\left .a+b x-\frac{\pi }{4}\right |2\right )}{b \sqrt{\sin (2 a+2 b x)} \sqrt{c \sec (a+b x)} \sqrt{d \csc (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]),x]

[Out]

EllipticE[a - Pi/4 + b*x, 2]/(b*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])

Rule 2630

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n, Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n),
 x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d \csc (a+b x)} \sqrt{c \sec (a+b x)}} \, dx &=\frac{\int \sqrt{c \cos (a+b x)} \sqrt{d \sin (a+b x)} \, dx}{\sqrt{c \cos (a+b x)} \sqrt{d \csc (a+b x)} \sqrt{c \sec (a+b x)} \sqrt{d \sin (a+b x)}}\\ &=\frac{\int \sqrt{\sin (2 a+2 b x)} \, dx}{\sqrt{d \csc (a+b x)} \sqrt{c \sec (a+b x)} \sqrt{\sin (2 a+2 b x)}}\\ &=\frac{E\left (\left .a-\frac{\pi }{4}+b x\right |2\right )}{b \sqrt{d \csc (a+b x)} \sqrt{c \sec (a+b x)} \sqrt{\sin (2 a+2 b x)}}\\ \end{align*}

Mathematica [C]  time = 0.218229, size = 66, normalized size = 1.25 \[ \frac{\tan (a+b x) \sqrt [4]{-\cot ^2(a+b x)} \text{Hypergeometric2F1}\left (-\frac{1}{2},\frac{1}{4},\frac{1}{2},\csc ^2(a+b x)\right )}{b \sqrt{c \sec (a+b x)} \sqrt{d \csc (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]),x]

[Out]

((-Cot[a + b*x]^2)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, Csc[a + b*x]^2]*Tan[a + b*x])/(b*Sqrt[d*Csc[a + b*x
]]*Sqrt[c*Sec[a + b*x]])

________________________________________________________________________________________

Maple [B]  time = 0.172, size = 517, normalized size = 9.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2),x)

[Out]

-1/2/b*2^(1/2)*(2*cos(b*x+a)*(-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a)+sin(b*x+a))/sin(b*
x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^
(1/2))-cos(b*x+a)*(-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)
*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+2*(-
(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/si
n(b*x+a))^(1/2)*EllipticE((-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-(-(-1+cos(b*x+a)-sin(b*x
+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*Ellipt
icF((-(-1+cos(b*x+a)-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+cos(b*x+a)^2*2^(1/2)-cos(b*x+a)*2^(1/2))/cos(b
*x+a)/sin(b*x+a)/(d/sin(b*x+a))^(1/2)/(c/cos(b*x+a))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d \csc \left (b x + a\right )} \sqrt{c \sec \left (b x + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d \csc \left (b x + a\right )} \sqrt{c \sec \left (b x + a\right )}}{c d \csc \left (b x + a\right ) \sec \left (b x + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))/(c*d*csc(b*x + a)*sec(b*x + a)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c \sec{\left (a + b x \right )}} \sqrt{d \csc{\left (a + b x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))**(1/2)/(c*sec(b*x+a))**(1/2),x)

[Out]

Integral(1/(sqrt(c*sec(a + b*x))*sqrt(d*csc(a + b*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d \csc \left (b x + a\right )} \sqrt{c \sec \left (b x + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))), x)